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Abstract
The collective electronic excitation (plasmon) modes of a three-dimensional
distribution of quantum wires such as those produced in mesoporous silica
(MCM-41) have been calculated. The plasmon frequencies are found to be
strongly dispersive for momentum components both parallel and perpendicular
to the axes of the quantum wires. The lowest subband plasmon modes are
acoustic for momentum components parallel to the wires and they are optical
for momentum components perpendicular to the wires. A comparison with the
plasmon modes of a single quantum wire or of a uniform three-dimensional
electron gas (3DEG) indicates that for plasmon wavelengths small (wavevector
q large) compared with inter-quantum-wire distance a, i.e. for aq � 1, the
calculated modes would tend to those of a single quantum wire, and they tend
to those of the 3DEG for large wavelengths (aq � 1). The contribution of
the lattice formed by the quantum wires in mesoporous silica is dominant for
intermediate wavelengths (0 � aq � ∞).

1. Introduction

In recent years there has been a surge of interest in the production and characterization of
microstructures such as quantum wells, quantum dots, quantum wires etc, because of their
potential industrial applications. Techniques such as molecular beam epitaxy (MBE) and
metallo-organic chemical vapour deposition (MOCVD), along with holographic patterning,
reactive ion etching, anode thinning etc, are being used with great success to produce good-
quality microstructures [1–7]. The reduced dimensionality of these structures introduces many
interesting new physical properties to these systems, which are also being studied for their basic
scientific interest [8–14]. While many studies have been carried out in a single quantum wire
or a two-dimensional array of quantum wires, more recently three-dimensional superlattices
(3DSLs) of quantum wires have been produced and their properties are being studied [15–17].
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Perhaps most interesting is the recent discovery by Mobil Oil Company of the mesosporic silica
with nanoscopic pores distributed in lattices of hexagonal (MCM-41), cubic (MCM-48) and
lamellar (MCM-50) symmetry [18, 19]. Several semiconducting compounds have now been
implanted into MCM-41 to obtain regular arrays of quantum wires arranged in a hexagonal
close-packed structure and their physical properties are being studied [20–26].

In this paper, we calculate the collective excitation (plasmon) modes of a 3DSL of quantum
wires distributed in a hexagonal lattice similar to the quantum wires in MCM-41. We do this
by using and extending a model previously developed by us for the study of a superlattice
formed by a layered two-dimensional electron gas (2DEG) system [27]. Since in the low-
energy and low-electron-density regime the electrons in the quantum wires are in the lowest
subband, and for computational simplicity, in this paper we calculate the plasmon modes for
the lowest subband only, even though the calculation can be extended to higher subbands
in a straightforward way [13]. Taking into account both the intra- and inter-quantum-wire
electronic Coulomb interaction we have carried out a calculation of the dielectric function
of the quantum wires arranged in a hexagonal close-packed structure in the random phase
approximation (RPA). We then obtain the collective excitation (plasmon) modes by imposing
the condition of cancellation of the real part of the (complex) dielectric function, i.e. from

Re ε(q, ωp) = 0. (1)

It should be mentioned that study of the electronic properties of a quasi-one-dimensional
conductor has a long history and some of the pioneering work has been done in this area by
Luttinger [28], Jerome and Schulz [29], Schulz [30] and others.

In section 2 we present the calculation of the plasmon frequencies for the 3DSL and
compare them with the plasmon frequencies of a single quantum wire and those of a uniform
3DEG. In section 3, we present a brief discussion and conclusions of this paper.

2. Three-dimensional quantum wire superlattice

We consider a 3DSL of quantum wires consisting of parallel 1DEGs arranged in a hexagonal
closed packed structure and separated by a distance a. A cross section perpendicular to the
quantum wire axes appears as a close-packed triangular two-dimensional Bravais lattice with
a as a lattice constant as shown in the lower right part of figure 1. This system is not formally
different from the multilayered electron gas system treated in [27], and considerations similar
to those of this reference yield

Re ε(q, ωp) ≡ 1 + 2e2F(q, κ)1(q, ω) = 0 (2)

where the geometric factor F(q, κ) corresponding to the distribution of the quantum wires in
a hexagonal lattice is given by

F(q, κ) =
∞∑

n1=−∞

∞∑
n2=−∞

ei(κ1n1+κ2n2)K0(qa|n|) (3)

where (n1, n2) and (κ1, κ2) are two-dimensional vectors defined in the direct lattice and in
the reciprocal lattice, respectively, and K0 is the modified Bessel function of the second kind.
More precisely, in the direct lattice, one has

n = (n1a1 + n2a2)/a

where |a1| = |a2| = a, and |a1 ×a2| = a2 sin 60◦, n1 and n2 being integers (lattice vector). In
the reciprocal lattice, the momentum component q⊥, perpendicular to the quantum wire axes,
is defined as

q⊥ = q1b1 + q2b2
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Figure 1. The three-dimensional quantum wire superlattice, seen in cross section, appears as
a triangular close-packed Bravais lattice (lower right part of the figure). This figure depicts the
primitive cell in the reciprocal two-dimensional lattice which may be considered a rhombus (with
respect to the axes κ1 and κ2), or a hexagonal Brillouin zone. The plasmon frequency ωp has been
calculated for momentum κ ranging along two symmetry directions: (i) direction T , defined by
κ ≡ κ1 = κ2, with the symmetry points �[κ = 0], and M ′[κ = π ]; (ii) direction �, defined by
κ ≡ κ1 = κ2, with the symmetry points �[κ = 0], K[κ = 2π/3] and M[κ = π ].

with b1 = a2 × u/|a1 × a2| and b2 = u × a1/|a1 × a2|, u being the unit vector along the
quantum wire axes; hence aibj = δij .

In (2), e is the electron charge and 1(q, ω) = −ρ1q
2/mω2 is the one-dimensional

electron polarization propagator where ρ1 = 2kF /π is the density of electrons on the one-
dimensional quantum wire. Equation (2) is obtained by noting that the longitudinal part of
the Coulomb interaction between an electron located on a quantum wire, and another electron
located at a distance r from the axis of that quantum wire, is given by

v0(q, r) = 4πe2r0I0(qr0)K0(qr) with r � 0 (4)

r0 being the radius of a quantum wire. In this equation I0 and K0 are the modified Bessel
functions of the first and second kind, respectively. Because r0 is small, I0(qr0) can be
replaced by 1. Moreover, since only the linear electron density is important, one-dimensional
expressions like ρ1 = 2πr0ρ2 and 1(q, ω) = 2πr02(q, ω) are introduced (a factor 2πr0 is
removed from the potential and re-introduced into the propagator 1 = 2πr02). As a last
step, v0(q) is introduced into (2) in the form

v0(q) = 2e2K0(qrnn′) (5)

where rnn′ represents the distance between the axes of quantum wires n and n′. However,
for electrons located on the same quantum wire (n = n′), K0 is divergent, and the original
argument qr0 has to be kept in the term !n = 0 of (3). Hence (3) is finally written as

F(q, κ) = K0(qr0) +

[ ∞∑
n1=−∞

∞∑
n2=−∞

ei(κ1n1+κ2n2)K0(qa|n|) − K0(0)

]
. (6)

The first term is a one-quantum-wire term. The second term (in brackets) includes the
contribution of the other quantum wires distributed uniformly on a hexagonal lattice. The
effective plasmon frequency for this 3DSL, ωp,eff(q,κ), is obtained by substituting (6) into (2).

For the sake of comparison, let us write down expressions for the plasmon frequencies of
a single quantum wire and of a uniform 3DEG.
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(i) A one-quantum-wire expression for F(q, κ) is

F1qw(q, κ) = K0(qr0)

where the subscript 1qw stands for one quantum wire. Substitution of this into (2) gives
the plasmon frequency for a single quantum wire as

[ωp,1qw(q)]
2 = (2e2ρ1/m)q2K0(qr0).

A similar formula has previously been derived for the plasmon frequency of a single
carbon nanotube by the present authors [31].

(ii) A uniform bulk expression for F(q, κ)

Funi3(q, κ) = (4π/
√

3a2)/(q2 + q2
⊥) = π/aQ2

with

q2
⊥ = (4/3a2)(κ2

1 + κ2
2 − κ1κ2)

gives

[ωp,uni3(q, θ)]
2 = (4πe2ρ3/m)q2/Q2.

Note that a three-dimensional density ρ3 = ρ1/(a
2 sin 60◦) has been introduced in this latter

expression and that q = Q cos θ , θ being the angle between the wavevector Q and the quantum
wire axis. ωp,uni3(q, θ) given by the above expression is the plasmon frequency of an isotropic
bulk material, except that we have broken up the wavevector Q into two components q and q⊥
(q⊥ being perpendicular to the wire axis), for an easy comparison with the results of a single
quantum wire or of an array of quantum wires.

In all our numerical calculations we have chosen the following data: we consider quantum

wires with an electron density ρs = 0.38 Å
−2

and a radius r0 = 3.39 Å. This yields

ρ1 = 2πr0ρs = 8.13 Å
−1

for the linear density along the quantum wires. Moreover we
choose a = 3r0 = 10.17 Å for the inter-quantum-wire separation (distance between two
adjacent quantum wires).

The plasmon frequencies have been calculated for momentum κ ranging along two
symmetry directions: (i) direction T , defined by κ ≡ κ1 = −κ2, with the symmetry points
�[κ = 0], and M ′[κ = π ]; (ii) direction �, defined by κ ≡ κ1 = κ2, with the symmetry points
�[κ = 0], K[κ = 2π/3] and M[κ = π ]. This geometry is depicted in figure 1.

The plasmon frequencies ωp,eff(q, κ), ωp,uni3 and ωp,1qw are plotted in figures 2 and 3.
In figure 2 we have plotted these plasmon frequencies as a function of the momentum
component q parallel to the quantum wire axes. The solid curves and the dashed curves
represent ωp,eff and ωp,uni3, respectively, for seven values of κ (the momentum component
perpendicular to the quantum wires), taken along the line T ≡ �KM (see figure 1). These
curves, labelled a, b, . . . , g, correspond to 6κ/π = 0, 1, 2, . . . , 6, respectively. The two
curves, a, related to κ = 0 (point � of figure 1), tend to the classical bulk plasmon frequency
for q ∼ 0. For all seven values of k, as aq increases, ωp,eff moves toward the dotted curve
corresponding to a single-quantum-wire result. This shift is significant even for relatively
moderate values of aq (�1) for curves e, f and g as indicated by the vertical lines. From this
trend we could conclude that ωp,eff will tend to ωp,1qw for really large values of aq(�1). For
small aq(≈0), ωp,eff approaches values of ωp,uni3 given by the dashed curves. This is clearly
visible for curves a–d, but becomes obscure for curves e–g because of their close proximity at
these values of aq. In the intermediate-wavelength range (0 � aq � ∞), however, ωp,eff is
significantly different from these two limits indicating a large contribution of the lattice.
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Figure 2. The effective plasmon frequency ωp,eff (solid curves) of the 3DSL along with ωp,uni3
(dashed curves) are plotted as a function of q for seven values of κ . The curves labelled a, b, . . . , g
correspond to 6κ/π = 0, 1, 2, . . . , 6, respectively. The dotted curve gives the single-quantum-wire
plasmon frequency ωp,1qw (independent of κ).

Figure 3. The plasmon frequencies ωp,eff (solid curves) and ωp,uni3 (dashed curves) are plotted
as a function of momentum κ for the two symmetry directions � ≡ �M and T ≡ �KM (see
figure 1) for five values q (from top to bottom, aq = 1.5, 1.2, 0.9, 0.6 and 0.3). The horizontal
dotted lines represent the plasmon frequency ωp,1qw of a single quantum wire.

In figure 3 we plot the plasmon frequencies as a function of momentum κ (perpendicular
to the quantum wires) for the two symmetry directions � ≡ �M ′ and T ≡ �KM (see
figure 1). The solid curves and the dashed curves correspond to ωp,eff and ωp,uni3, respectively,
and the horizontal dotted lines to ωp,1qw, for five values of q (from top to bottom, one has
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aq = 1.5, 1.2, 0.9, 0.6 and 0.3). For q ∼ 0, these sets of curves coincide with the figure axes.
Note that the right part beyond the K point of the figure (along �KM) presents the same
features as figure 2. Obviously the plasmon dispersion is strong for momentum components
both parallel and perpendicular to the quantum wires.

3. Conclusions

We have calculated the lowest subband collective electronic excitation modes (plasmon
dispersion) of a quantum wire superlattice arranged in a hexagonal close-packed structure
similar to the quantum wires in mesoporous silica (MCM-41). These effective plasmon
frequencies along with those of a single quantum wire and of a 3DEG have been plotted
in figures 2 and 3. It is seen in figure 2 that the direction along the axes of the quantum wires is
the ‘easy direction’ for the excitations of the plasmons and thus for any q, the maximum occurs
at the �-point. The plasmon frequency falls off when the effective wavevector deviates from
the easy direction as seen in figure 3. The plasmon frequency has an acoustic behaviour at
small q for all values of κ �= 0 (figure 2). Figure 2 also shows that the 3DSL plasmon frequency
begins to move toward that of a single quantum wire when the wavelength is comparable to or
somewhat smaller than the inter-quantum-wire distance a (aq � 1), indicating that it would
converge to ωp,1qw for aq � 1. This figure also shows that the 3DSL plasmon frequency
converges to the plasmon frequency of the uniform electron gas when the wavelength is
large compared with a (aq � 1). The lattice contribution to the plasmon frequency is most
significant at the intermediate wavelengths (0 � aq � ∞). Also, the plasmon dispersion is
large for momentum components both parallel and perpendicular to the axes of the quantum
wires.

The plasmon frequencies as calculated in this paper should be observable in the electron
energy loss spectra (EELS), photoemission spectra, resonant inelastic light scattering (Raman
spectra) etc of a quantum wire superlattice. The dispersion of the plasmon frequencies for
momentum components parallel and perpendicular to the quantum wire axes has already been
observed in a lateral distribution of quantum wires by Egeler et al [14]. More experiments
are needed in 3DSLs of quantum wires as formed in MCM-41 to observe the nature of their
plasmon frequencies.
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